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1. Summary 
This is the final report for our AFOSR sponsored project: non-invasive techniques for monitoring 
human fatigue. Through this project, we develop a real time non-intrusive prototype human fatigue 
monitor. The fatigue monitor was subsequently validated by a study involving human subjects to 
correlate its output with a vigilance task performance. In this report, we first summarize our 
technical accomplishments, followed by a discussion of transitions related to this project. The 
latest paper reprints, publications, demos, and media coverage about this project may be found at 
http://www.ecse.rpi.edu/~qji/Fatigue/fatigue.html 

2. Introduction 
As combat systems become more and more sophisticated and reliable, the major limiting factor for 
operational dominance in a conflict is the warfighter. Eliminating the potential for fatigue while 
maintaining a high level cognitive and physical performance of the warfighter will create a 
fiuidamental change in war fighting and force employment. Developing a technology to detect and 
predict the degradation of psychomotor performance of a warfighter due to fatigue is therefore 
critical to ensure the success of a mission. 

Many efforts [3,5,6,7,13,14,16,18] have been reported in tiie literatiire for developing active fatigue 
monitoring systems. Among different techniques, the best detection accuracy is achieved with 
techniques that measure physiological conditions like brain waves, heart rate, and pulse rate 
[15,18]. These techniques, while accurate, are limited to in-house study and are not applicable to 
many real world applications due to extremely intrusiveness. 

People in fatigue exhibit certain visual behaviors easily observable fi-om changes in facial features 
such as the eyes, head, and face. Visual behaviors that typically reflect a person's level of fatigue 
include eyelid movement, gaze, head movement, and facial expression. To make use of these 
visual cues, another increasingly popular and non-invasive approach assessing fatigue is through 
the analysis of one's video image using state-of-the-art technologies in computer vision. 
Techniques using computer vision are aimed at extracting and analyzing visual characteristics 
typically reflecting an operator's level of fatigue fi-om the video images of the operator. Typical 
visual characteristics observable from the image of a person with reduced alertness level include 
slow eyelid movement, smaller degree of eye openness (or even closed), frequent nodding, 
yawning, narrowness in the line of sight, sluggish in facial expression, and sagging posture. The 
main advantage of this approach is that it is non-intrusive and therefore will receive a complete 
cooperation from the operator. In fact, a recent workshop [2], sponsored by the Department of 
Transportation (DOT) on driver's vigilance, concluded that computer vision represents the most 
promising non-invasive technology to monitor driver's vigilance. 

Numerous efforts have been reported in the literature on developing active real-time image- 
based fatigue monitoring systems [3,5,7,14,16,18,42,43,44,45,46]. These efforts are primarily 
focused on detecting driver fatigue. Despite these efforts, real time non-intrusive human fatigue 
monitoring remains a largely imresolved issue. One deficiency with the current efforts is that they 
tend to use only a single visual parameter such as PERCLOS. Due to the inherent ambiguity and 
uncertainty associated with a single parameter, these systems tend to be less robust and accurate. 
To overcome this limitation, we propose to simultaneously use multiple fatigue parameters.  All 



these parameters, however imperfect they are individually, if combined systematically, can provide 
an accurate and robust characterization of a person's level of vigilance. 

The work for this project consists of two major parts. The first part focuses on developing 
real time computer vision algorithms to compute various parameters to characterize eyelid 
movement, gaze movement, head movement, and facial expression. The second part focuses on 
building a probabilistic framework to model fatigue and to systematically combine different fatigue 
parameters, along with the relevant contextual information, to produce a composite fatigue index. 
Figiire 1 summarizes our approach. 
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Figure 1: Flowchart of the proposed fatigue monitoring system 
We have made significant progress in each of these two areas as detailed below. 

3. Visual Cues Extraction 
To monitor fatigue, we propose to monitor the subject's facial behaviors, identify visual cues 
typically characterizing a person's state of alertness, and develop computer vision algorithms to 
compute them non-intrusively in real time. In this section, we summarize the prototype computer 
vision system we have developed to achieve this goal. Details of the algorithms may be found in 
these publications [9-12,19,30-38]. 

3.1 Hardware Setup 
The main hardware components of oiir system consist of a remotely located CCD camera, a 
specially-designed IR illuminator, and a video decoder. The IR illuminator consists two sets of IR 



LEDs, distributed evenly and symmetrically along the circumference of two coplanar concentric 
rings as shown in Figure 2. 

Figure 2. An actual photo of the two rings IR illuminator configuration and the CCD camera 
The video decoder we developed separates the input interlaced image into two fields, even and odd, 
and uses the signal to alternately turn the outer and inner IR rings of the illuminator on to produce 
the dark and bright pupil image on the even and odd field images respectively as shown in Fig. 3. 
The bright and dark pupil effects are subsequently exploited for accurate and robust eyes tracking 
in real time. 

(a) (b) 
Figure 3. The bright eye image (a) and the dark eye image (b), resulted by illuminating the 
face with LEDs in inner ring and outer ring respectively. 

3.2 Eye Detection and Tracking 
Eye activities can reveal antinational mechanisms and provide a window into one's cognitive and 
psychomotor capabilities. People experiencing fatigue or drowsiness tend to have abnormal eye 
activities such as slower eye blinks, longer eye closure duration, more eyelid droops, diminished 
eye blink fi:equency, and less pupil movement. Eye detection and tracking is therefore important to 
understand eye activities. Our research has led to a computer vision algorithm that can robustly 
and accurately detect and track eyes in real time and compute various parameters related to eyeUd 
and pupil movement. By combining the latest technologies in appearance-based object recognition 
and tracking with active IR illumination, our eye tracker can robustly track eyes under variable and 
realistic lighting conditions and under various face orientations. In addition, our integrated eye 



tracker is able to handle occlusion, glasses, and to simultaneously track multiple people with 
different distances and poses to the camera. Figure 4 summarizes our eyes detection and tracking 
algorithm. Details on our eye tracking algorithms can be found in [19]. 
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Figure 4. Eyes detection and tracking system flowchart 
The primary goal of eye tracking is to monitor eyelid movement. Various parameters have been 
proposed to measure eyelid movement such as blink frequency, blink speed, eye closure duration, 
and PERCLOS. For this research, we focus on real-time computation of two eyelid movement 
parameters: PERCLOS and AECS. PERCLOS measures the percentage of eyelid closure over the 
pupil over time. A recent study by the Federal Highway Administration [4,17] shows, among many 
drowsiness-detection measures, PERCLOS was found to be the most reliable and valid ocular 
measure of a person's alertness level. AECS computes the average eye closure and opening speed, 
as determined by the amount of time needed to fully close/open the eyes. Our preliminary study 
indicates that the eye closure speed is distinctively different between a drowsy and alert subject. 
This may be explained by the tired muscle near the eyes for a person in fatigue. Figure 5 shows the 
detected eyes and the real time display of the running average measurements of PERCLOS and 
AECS over time. 

THEPERCtOS 

Figure 5. The detected eyes (right) and real time computing and displaying the running 
average measurements of PERCLOS and AECS. 



3.3 Gaze Detection and Tracking 
Gaze has the potential to indicate a person's level of vigilance. A fatigue individual tends to have a 
narrow and/or slow gaze movement. Gaze may also reveal one's needs and attention. Gaze 
estimation is important not only for fatigue detection but also for identifying a person's focus of 
attention, which can be used in the area of human-computer interaction. 

The current remote gaze trackers work well only for a static head, which is a rather restrictive 
constraint on the part of the user. This poses a significant hurdle for practical application of the 
system. Another serious problem with the existing eye and gaze tracking systems is the need to 
perform a rather cumbersome calibration process for each individual. Often re-calibration is even 
needed for the same individual who already underwent the calibration procedure, whenever his/her 
head moves. In view of these limitations, we present a gaze estimation approach [32] that accounts 
for both the local gaze resulted from pupil movement and the global gaze resulted from the head 
movement. The global gaze and local gaze are combined together to obtain the precise gaze of the 
user. Our approach, therefore, allows natural head movement while still estimating gaze 
accurately. Another effort is to make the gaze estimation calibration free. New users or the 
existing users who have moved, do not need undergo a personal gaze calibration before using the 
gaze tracker. This is made possible by the use of Generalized Regression Neural Networks 
(GRNNs) to map pupil properties to screen coordinates. Therefore, the proposed gaze tracker can 
perform robustly and accurately without calibration and under natural head movements. A US 
patent is pending for our gaze detection and tracking algorithm. An overview of our gaze 
estimation algorithm is shown in Figure 6. More on our gaze estimation technique may be found in 
[32]. 
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Figure 6 Major components of the proposed gaze estimation system, 

Two gaze parameters are computed to characterize alertness. They are PerSac and GazeDis. While 
PerSac computes the percentage of saccade eye movement over time, GazeDis measures spatial 
fixation distribution over time. It is assumed that an alert person has a larger visual awareness and 



experiences more frequent saccade movements than those of a sleepy person.   Figure 7 gives a 
running average plot of PerSac. 
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Figure 7 Plot of PERSAC parameter over time 

3.4 Face Pose Tracking 
Besides eye activities, head movement like nodding or inclination or frequent head tilts is a good 
indicator of a person's fatigue or the onset of fatigue [1]. In fact, irregular head movement (e.g., 
nodding) often occurs with people in fatigue. Head movement parameters such as head orientation, 
movement speed, frequency, etc. could potentially indicate one's level of vigilance. 

Our research in this area focuses on developing computer vision algorithms for real time face 
detection and 3D face pose tracking from a monocular camera. So far, this research has led to the 
development of four different algorithms [8,11,12,37]. The first method focuses on determining 
face orientation by modeling face as an ellipse and determining face orientation based on the ellipse 
distortions. The second algorithm performs face orientation classification by performing a wavelet 
transform on the image and uses the wavelet coefficients (those sensitive to face orientation) to 
discriminate different face orientations. The third one performs face orientation determination 
based on the relationship between face orientations and the geometric properties of pupils. The 
fourth algorithm [37] assumes face can be modeled by a planar rectangle. Face detection and 
tracking is performed simultaneously. This method allows to real time estimate 3 face angles: pan, 
tih, and swing. This algorithm is more robust and accurate and is finally adopted for face pose 
tracking. Figures 8 presents resuhs of the face orientation estimation algorithm on an image 
sequences, with the estimated face normal as indicated by the white line near the nose. 

Figure 8: The estimated face normal in different frames under different face orientations. 
The white line vector represents the 3D face normal estimate 

Figure 9 plots of the 3 face angles over time. 



Figure 9: Face angles change over time 
The parameter we compute to relate head movement to fatigue is PerNod, which computes the 
frequency of head tih over time. 

3.5 Facial Expressions Recognition 
Facial expressions such as yawning or lagging muscles or expressionless are all visual 

symptoms of fatigue. The problem of analyzing facial expressions has become very important 
towards realizing a variety of applications such as advanced man-machine interfaces, human 
cognitive state monitoring, and visual communication systems. In general, people tend to exhibit 
different facial expressions under different levels of vigilance. For example, a drowsy person can 
be characterized by the slackness of the face muscles, the drooping of the upper eyelids, and 
frequent yawning. We believe that facial expressions provide yet another source of information to 
characterize a person's alertness. 

We developed algorithms [34,38] for automatic facial feature tracking and facial 
expressions analysis. To characterize facial expression, our algorithm first identifies a few facial 
feature points (22) obtained by feature extraction in the frequency domain via Gabor filtering, 
guided by the bright pupils detected from eye tracking algorithm. The feature points are located 
near eyes, nose, and mouth as shown in Fig. 10 (a). The spatial semantics among the tracked 
features are then used to characterize facial expressions. The features are spatially related by 
graphs, with each feature point representing the node of the graph. The graph is elastic in that it 
deforms under different facial expressions as shown in Fig. 10(b). 

(a) (b) 
Figure 10 (a) 22 facial features tracked; (b) the local graphs for facial expressions analysis 

Different facial expressions can therefore be captured by different spatial configuration of the 
future points or the elastic graphs. Figure 11 represents two different facial expressions with 
detected feature points superimposed. 



(a) (b) 
Figure 11: A face with two different facial expressions: (a) serious, and (b) drowsy and 
yawning. Facial expression can be characterized by spatial configuration of the feature 
points, which are superimposed on the original images and are represented by elastic graphs. 

Based on the detected and tracked facial features over time, we developed a new approach to facial 
expression understanding in image sequences [38]. We propose a stochastic framework, based on 
combining the Dynamic Bayesian Networks (DBNs) with Ekman's FACS coding [47], for 
expression representation and recognition. The DBNs has the expressive power to capture the 
dependencies, uncertainties and temporal behaviors exhibited by facial expressions, so that 
dynamic behaviors of facial expressions can be well modeled. The recognition of facial 
expressions is accomplished by fusing not only from the current visual observations, but also fi-om 
the previous visual evidences. Consequently, the recognition becomes highly robust and accurate 
through the modeling of temporal behavior of facial expression. Figure 12 (top) shows an image 
sequence with two different facial expressions (happy and siirprise) varying in intensity from frame 
to frame. Figure 12 (bottom) plots the probability of each of the two facial expressions over time. 

Image l=ramo 

Figure 12 Facial expression recognition in a sequence. Top: two expressions (happy and 
surprise) vary in intensity. Bottom: the estimated probability for each expression. 



For fatigue monitoring, we are particularly interested in detecting yawning. Yawning is 
characterized by mouth movement. Figure 13 plots mouth openness over time. A parameter 
PerYwan can be computed from the mouth openness to measure the frequency of yawning. 

Figure 13 Plot of the openness of the mouth over time. The bumps are the detected yawns 

4. Fatigue Modeling via Bayesian Networks 

4.1 Motivation and Introduction 
The results of visual cues extraction are the extracted visual fatigue measures. These extracted 
fatigue measures are from different visual behaviors characterizing human fatigue from different 
perspectives. Furthermore, by the nature of process used in extracting information form the 
images, uncertainties exist concerning the properties of the extracted visual fatigue measures. The 
extracted fatigue measures m support or denial of a particular level of fatigue are therefore partial 
or incorrect or even conflictive with each other. On the other hand, all those visual cues, however 
imperfect and diverse they are, if combined, can provide an accurate fatigue characterization. 

In addition to the extracted visual fatigue measures, there exist relevant contextual information that 
may lead to human fatigue. The specific prior contextual information such as physical fitness, sleep 
history, ambient temperature, and time of day are all important circimistantial factors, which, if 
known, will significantly improve the fatigue prediction accuracy. The use of different visual 
fatigue measures, the imcertainties associated with the extracted fatigue measures, and the 
mcorporation of contextual information requires a mechanism to systematically integrate the 
diverse sources of evidences in a principled manner so that a consistent overall evaluation of a 
person's vigilance level can be achieved. By aggregating evidences from multiple sources into one 
representative format, we can reduce the uncertainty and resolve the ambiguity present in the 
information from a single source. The fusion process, thus, may solve the problem of local 
conflicting decisions and enhance the global accuracy for overall results. Information fiision and 
evidence mtegration are realized using the Bayesian probabilistic networks. A Bayesian network 
provides a mathematically coherent and a sound basis for uncertainty representation and for 
aggregating evidences. The goal of Bayesian inference is to identify a person's fatigue level that 
could best explain the observed visual behaviors and the available contextual information. 

4.2 Fatigue Modeling Using Bayesian Networks 
A Bayesian Network (BN) provides a mechanism for graphical representation of uncertain 

knowledge and for inferring high level activities from the observed data. Specifically, a BN 
consists of nodes and arcs connected together forming a directed acyclic graph (DAG) [20]. Each 
node can be viewed as a domain variable that can take a set of discrete values or a continuous 
value. An arc represents a probabilistic dependency between the parent node and the child node. 
Since BN was developed to model the distribution processing in reading comprehension in the late 
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of 1970's, numerous studies have been conducted and many systems have been constructed based 
on this paradigm in a variety of application areas, including industrial applications, military, 
medical diagnosis and commercial applications [21,22,23]. 

The main purpose of a BN model is to infer the unobserved events from the observed and 
contextual data. So, the first step in BN modeling is to identify those hypothesis events we want to 
infer and group them into a set of mutually exclusive events to form the target hypothesis variable. 
The second step is to identify the observable data that may reveal something about the hypothesis 
variable and then group them into information variables. There are also other hidden states which 
are needed to link the high level hypothesis node with the low level information nodes. For fatigue 
modeling, fatigue is obviously the target hypothesis variable that we intend to infer while other 
contextual factors, which could cause fatigue, and visual cues, which are symptoms of fatigue, are 
information variables. Of many factors that can cause fatigue, the most significant ones are sleep 
history, circadian, work condition, work environment, and physical condition. These contextual 
factors can be further broken down as follows. The most profound factors that characterize work 
environment are temperature, weather and noise; the most significant factors that characterize 
physical condition are age, sleep disorders and food; the factors affecting work conditions include 
workload and type of work. Furthermore, factors affecting sleep quality include sleep environment 
and sleep time. The sleep environment includes random noise, backgroimd light, heat and humidity 
around the bed. From the computer vision module, we can obtain several visual fatigue parameters 
to characterize eyelid movement (PERCLOS and AECS), gaze (PerSac and GazeDis), head 
movement (PerNod), and the facial expression (PerYwan). Putting all these factors together, the 
BN model for fatigue is constructed as shown in Fig. 14. The target node is fatigue and the nodes 
above the target node represent various major factors that could lead to one's fatigue. They are 
collectively referred to as the contextual information. The nodes below the target node represent 
visual observations from the output of our computer vision system. These nodes are collectively 
referred to as the observation nodes. 

4.3 Construction of conditional probability table (CPT) 
Before using the BN for fatigue inference, the network needs be parameterized. This 

requires learning the prior probability for the root nodes and the conditional probabilities for the 
Imks from the training data. For this research, training data were obtained from three different 
sources including data obtained from our human subject study, data from several large-scale 
subjective surveys [26,27,28,29], and some subjective numbers from experts. 

From our human subjects study, we collected a large amount data from 16 experiments for 8 
subjects. Data consists of TOVA task performance data and visual parameters computed by our 
computer vision system. TOVA performance lapses can be used as a ground-truth measure of 
alertness while the visual observations can serve as the sensory observations. These data are used 
to train the lower part of the fatigue model. The upper part of model is parameterized based on the 
data from the surveys, despite their subjectivity. Since these surveys were not designed for the 
parameterization of our BN model, not sl\ needed probabilities are available and some conditional 
probabilities are therefore inferred from the available data using the so-called noisy-or principle 
[24]. Still some prior or conditional probabilities are lacking in our model, they are obtained by 
subjective estimates methods [24]. With this, all the prior and conditional probabilities in our BN 
model are obtained. Details on the learning of CPTs and the final numbers may be found in [41]. 
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Fig. 14. A Bayesian network model of human fatigue 
4.4 The Experimental Results 

Given the parameterized model, fatigue inference can then commence upon the arrival of 
visual evidences via belief propagation. MSBNX software [25] is used to perform the inference 
and both top-down and bottom-up belief propagations are performed. Since it is impossible to 
enumerate £J1 possible input combinations, here we only simulate some typical combination of 
evidences and the results are summarized in Table 1 

Table 1: Fatigue Inference Resuhs from the Bayesian Fatigue 1 VIodel 
No. Evidences Used Posterior probabilities 

of Fatigue ('yes' state) 

1 No any evidence 0.58 

2 PerYawn (high) 0.82 

3 PERCLOS (high) 0.89 

4 PerSac (low) 0.84 

5 PerNod (high) 0.73 

6 Temperature (high) 0.72 

7 Weather (abnormal) 0.73 

8 Noise (high) 0.71 

9 Age (>45 year) 0.60 

10 Circadian (drowsiness) 0.77 

11 Sleep disorder (yes) 0.60 

12 Food (hungry) 0.63 

13 Workload (heavy) 0.72 

14 Type work (tedious) 0.74 

15 Worry (yes) 0.69 

16 Random Noise (often) 0.60 

17 Light (yes) 0.60 

18 Heat (high) 0.60 

19 Sleep time (loss) 0.68 

20 PERCLOS (high), PerSac (low) 0.95 

21 PERCLOS (high), PerYawn (high) 0.97 

22 PerSac (low), PerYavra (high) 0.94 

23 PerSac (low), PerNod (high) 0.91 

24 PerNod(high), PerYawn (high), PerSac (low) 0.95 

25 PerSac (low), Circadian (drowsiness) 0.92 

26 PerYavra (high), Food (hungry). Random Noise (yes), Temperature (high), Type 
work (tedious) 

0.95 

27 PERCLOS (high). Random Noise (often). Temperature (high). Worry (yes) 0.96 

28 PerNod (high), PerYawn (high). Random Noise (often). Temperature (high). Worry 
(yes) 

0.96 

12 



29 

30 

PerNod (high), PerSac (low), Random Noise (often), Sleep disorder (yes). 
Temperature (high) 

Age (>45 year), Circadian (drowsiness). Food (hungry). Heat (high), sleep humidity 
(high). Sleep disorder (yes), sleep time (loss). Type work (tedious). Weather 

(abnormal). Workload (heavy), Worry (yes) 

0.96 

0.96 

From Table 1, we can see that the prior probability of fatigue (e.g. when there is not any evidences) 
is 0.58 (Row. #1). The observation of single visual evidence (Rows #2-#5) does not provide 
conclusive finding since the estimated fatigue probability is less then the critical value 0.95 
(arbitrarily chosen), even the observation of high PERCLOS measurement (Row #3) can not 
produce sufficient confidence in fatigue. Similarly, the presence of a single contextual factor (Row 
#6-#19) cannot produce high probability of fatigue. On the other hand, the combination of two 
visual evidences (Row. #20~#23),) leads to a fatigue probability close to or higher than 0.95. Any 
combination of three visual cues guarantees the estimated fatigue probability exceeds the critical 
value (Row #24). The same can be achieved by combining visual evidences with contextual 
evidences (Row #26-#29). This demonstrates the importance of contextual information. In fact, the 
simultaneous presence of all contextual evidences only almost guarantees the occurrence of fatigue 
(Row #30). These inference results, thought preliminary and synthetic, demonstrate the utility of 
the proposed framework for predicting and modeling fatigue by pooling information fi-om different 
sources. 

4.5 System Integration 
The vision module and fatigue model is subsequently integrated to produce the prototype 

fatigue monitor. For this, an interface program has been developed to connect the output of the 
computer vision system with that of the information fiision engine. Upon the arrival of new 
evidences from the vision module, the interface program instantiates the evidences of the fatigue 
network, which then performs fatigue inference. The interface program then displays and plots the 
composite fatigue index in real time on the screen as shown in Figure 
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Figure 15 The display panel of the interface program that integrates the vision module with 
the information fusion module. The program displays and plots the fatigue score (the curve 
in the middle) in real time. 

13 



5. System Validation 
The last part of this research is to experimentally and scientifically demonstrate the validity of the 
computed fatigue parameters as well as the composite fatigue index. 

5.1 Validation of the measurement accuracy 
Here, we present results to quantitatively characterize the measurement accuracies of our 

computer vision techniques in measuring eyelid movement, gaze, face pose, and facial expressions. 
The measurements fi-om our system are compared with those obtained either manually or using 
conventional instruments. 

5.1.1 Eye detection and tracking accuracy 
This section summarizes the eye detection and tracking accuracy of our eye tracker. For 

this study, we randomly selected an image sequence that contains 13,620 fi-ames, and manually 
identified the eyes in each frame. The manually labeled data serves as the ground-truth data and 
are compared with the eye detection results from our eye tracker. The study shows our eye tracker 
is quite accurate, with a false alarm rate of 0.05% and a misdetection rate of 4.2%. Further study 
shows that the misdetections can be broken down into three cases. In case 1, the eye is fully open, 
but our tracker fails to detect the eyes. This accounts for about less than 1% of misdetections. In 
cases 2 and 3, eyes are misdetected in the frames just prior to or after the eye is closed as shown 
below. 

(a) (b) (c) 
Figures 16:  Cases of eye misdetections: (a) eye is fully open; (b) eye begins to close, (c) eye 
begins to open after closure. 

5.1.2 Eye detection and eye parameter estimation accuracy 
In this experiment, we studied the positional accuracy of the detected eyes as well as the 

accuracy of the estimated pupil size. The ground-truth data are produced by manually determining 
the locations of the eyes in each frame as well as the size of the pupil. The size of the pupil is 
determined by manually selecting a few points along the boundary of the pupil and then performing 
an ellipse fitting on the selected points. The pupil size is then characterized by the ratio of major 
axis length to that of minor axis. The ratio is also used to characterize the degree of eye opening. 
Figures 17 and 18 summarize the comparison results. It is clear from Figure 17 that the detected 
eye positions match very well with manually detected eye positions, with a RMS position errors of 
1.09 and 0.68 pixels for x and y coordinates respectively. 
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Figure 17 The estimated eye positions versus the manually detected eye positions for 100 
random selected consecutive frames: (a) x coordinates and (b) y coordinates. 

Figure 18 shows the estimated pupil size (ratio) versus the manually determined the pupil size for 
the same unage sequence. The two curves basically match, with a RMS error of 0.0812. The 
discrepancies are primarily caused by the different methods used to estimate the pupil ratio. The 
automated method computes the pupil ratio based on all pixels of the pupils while the manual 
method uses only the boundary pixels. In addition, inaccuracy and inconsistency in selecting 
boundary points by the manual method further contributes to the differences. 

Pupil Ratio Comparison 

10000 

Figure 18: The estimated pupil size versus the manually determined pupil size for 100 
random frames. 

5.1.3 Face pose parameters accuracy 
Here, we present the experimental results that validate the accuracy of our face pose 

estimation. Our face pose estimation computes in real time 3 face angles, pan, tih, and swing. To 
study their accuracy, we use a head-movmt head tracker that tracks head movements. The ou^ut of 
the head-movmt head tracker is used as the ground-truth. Figure 19 visually plots the tracking 
results of our face tracker versus that of the head tracker. It is apparent that qualitatively, the two 
trackers match each other pretty well. 

15 



Face Pose Angle (pan) Comparison F«e Pose Angle (liH) Comparison 

100 150 
Frame 

250 

(a) (b) 
Figure 19 The estimated pan angle (a) and tilt angle (b) versus the angles computed by the 
head tracker for 80 frames 

Quantitatively, the RMS errors for the pan and tilt angles are 1.92 degrees and 1.97 degrees 
respectively. This experiment demonstrates that our face pose estimation technique is sufficiently 
accurate. 

5.2 Validation of fatigue parameters and the composite fatigue score 
To study the validity of the proposed fatigue parameters and that of the composite fatigue 

mdex, we performed a human subject study. The study included a total of 8 subjects. All are 
healthy including two females. The oldest subject is 65 while the youngest subject is 21 year's old. 
Two test bouts were performed for each subject. The first test was done when they first arrived in 
the lab at 9 pm and when they were fiiUy alert. The second test was performed about 12 hours later 
early in morning about 7 am the following day, after the subjects have been deprived of sleep for a 
total of 25 hours. 

During the study, the subjects are asked to perform a TOVA test. The TOVA test consists 
of a 20-minute psychomotor test, that requires the subject to sustain attention and respond to a 
randomly appearing light on a computer screen by pressing a button. TOVA test was selected as 
the validation criterion because flying or driving is primarily a vigilance task requiring 
psychomotor reactions, and psychomotor vigilance. Various performance measures are used to 
evaluate the subject's performance in 2 seconds interval including response time, omission and 
commission errors. For each subject, we collect the following data: visual data (eyelid movement, 
gaze, facial expressions, and face pose), TOVA task performance measures, and EEG. 

5.2.1 TOVA Performance Lapses Versus Fatigue 
TOVA performance lapses occur when the subject's response time to the target signal is 

over 500 ms or when the subject fails to responds to the signal (omission). In this experiment, we 
study the average TOVA performance lapses over all the subjects for the two different bouts. The 
average TOVA performance lapses for bout 1 is 26 times while the average lapses for bout 2 is 56 
times, apparently a significant increase in the number of performance lapses for the morning bout. 
In addition, the response time also varies between the two bouts. Figure 20 plots tiie response time 
for the two bouts for two subjects. It shows the response time is generally longer for the morning 
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bout for both subjects.  This demonstrates that TOVA performance response time correlates well 
with level of fatigue. 
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Figure 20 Plots of TOVA response time for two subjects (Ji and Zhu) for two study bouts: one 
in the evening (A) when the subject is awake and the other is in the early morning (B) when 
the subject has been deprived 16 hours of sleep. 

5.2.2 Validation of the PERCLOS measure 
Here we present results to show the correlation of the computed PERCLOS with the TOVA 

performance lapses and with level of fatigue. Figure 21 plots TOVA performance lapses v.s. 
PERCLOS measurements. It is clear that most of the performance lapses happen near the peaks of 
the PERCLOS. This demonstrates the correlation between the performance lapses and high 
PERCLOS measurements. 

Comparison of TOVA and PERCLOS 

10000 12000 

Figure 21a: TOVA performance lapses (blue dots) superimposed on PERCLOS plot for the 
entire 20 minutes for a subject. 
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If the PERCLOS threshold is set at 0.2, then the agreement rates for the figures above is 0.76, i.e., 
76% of the performance lapses occiir near the peaks of PERCLOS. 

To further study the correlation between PERCLOS and the reaction time, we plotted the average 
reaction times versus average PERCLOS measurements as shown in Figure 21b. The figure clearly 
shows the approximate linear correlation between PERCLOS and the TOVA response time. This 
experiment once again demonstrates the validity of PERCLOS in quantifying vigilance, as 
characterized by TOVA response time. 

0.56 

'^ 50 200 250 300    350    400 
TOVA Response Time 

450 500 550 

Figure 21b: PERCLOS versus TOVA response time. The two parameters are clearly 
correlated almost linearly. A larger PERCLOS measurement corresponds to a longer 
reaction time. 

Fmally, we want to demonstrate the correlation between PERCLOS and fatigue. For this, we 
compared the PERCLOS measurements for two bouts for the same individual. The comparison is 
shown in Figure 21c, where it is clear that the PERCLOS measurements for the night bout (when 
the subject is alert) is significantly lower than the morning bout (subject is fatigue). This not only 
proves the validity of PERCLOS to characterize fatigue but also proves the accuracy of our system 
in measuring PERCLOS. 

PERCLOS Compirison Between Morning (Droway) end Eyenmn (AJert)  

Figure 21c: PERCLOS measurements for evening (blue) and morning (red) bouts 
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5.2.3 Validation of AECS parameter 
ACES represents the average eye closure and opening speed. In this experiment, we want 

to verify its validity as an ocular measure of human fatigue. Again, we plot AECS over the entire 
period and superimpose the TOVA performance lapses on the curve to see if they coincide with 
high values of AECS as shown in Figure 22. 

Figure 22a: TOVA performance lapses (blue dots) superimposed on AECS plot for the entire 
20 minutes. It is clear that most of the performance lapses happen near the peaks of the 
AECS (corresponding to longer closure time). This demonstrates the correlation between the 
performance lapses and the high AECS measurements. 

To further study the correlation between AECS and the TOVA response time, we plotted the 
average reaction times versus average AECS measurements as shown in Figure 22b. The figure 
clearly shows the approximate linear correlation between AECS and the reaction time. This 
experiment once again demonstrates the validity of AECS in quantifying vigilance, as characterized 
by TOVA response time. 

250    300    360    400    450    500    550    600 
TOVA Response Time 

Figure 22b: AECS versus TOVA response time.  The two parameters are clearly correlated 
almost linearly. A larger AECS measurement corresponds to a longer reaction time. 
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Finally, we want to demonstrate the correlation between AECS and fatigue. For this, we compared 
the AECS measurements for two bouts for the same individual. The comparison is shown in Figure 
22c, where it is clear that the AECS measurements for the night bout (when the subject is alert) is 
significantly lower (faster) than the morning bout (subject is fatigue). This not only proves the 
validity of AECS to characterize fatigue but also proves the accuracy of our system in measuring 
AECS. 

AECS Compirison Between Morning (Drowsy) and Evening (Alert) 

— Morning (Drowsy) 
— Evening (Alert) 

Figure 22c: AECS measurements for evening (blue) and morning (red) bouts 
5.2.4 Validation of gaze parameter PerSac 

PerSac represents the average saccade eye movement over time. In this experiment, we 
want to verify its validity as an ocular measure of human fatigue. Again, we plot in Figure 23a 
PerSac measure over the entire period and superimpose the TOVA performance lapses on the curve 
to see if they coincide with low values of PerSac. From Figure 23a, we can see that TOVA 
performance lapses mostly occur with low PerSac values, i.e., less saccade movement correlates 
with longer response time or slower reaction time. 

Comparison Between TOVA and PERSAC 

Figure 23a TOVA performance lapses (blue dots) superimposed on PerSac plot for the entire 
20 minutes. It is clear that most of the performance lapses happen when PerSac measure is 
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low (corresponding to less saccade movement). This demonstrates the correlation between 
the performance lapses and low PerSac measurements. 

To further study the correlation between PerSac and the TOVA response time, we plotted the 
average reaction times versus average PerSac measurements as shown in Figure 23b. The figure 
clearly shows the approximate negative linear correlation between PerSac and the response time. 
This experiment once again demonstrates the validity of PerSac in quantifying vigilance, as 
characterized by TOVA response time. 

350 400 450 
TOVA Response Time 

600 

Figure 23b: PerSac versus TOVA response time. The two parameters are clearly correlated 
almost linearly. A smaller PerSac measurement corresponds to a longer response time. 

Finally, we want to demonstrate the correlation between PerSac and fatigue. For this, we compared 
the PerSac measurements for two bouts for the same individual. The comparison is shown in 
Figure 23c, where it is clear that the PerSac measurements for the night bout (when the subject is 
alert) is significantly larger (more saccade movements) than the morning bout (subject is fatigue). 
This not only proves the validity of PerSac to characterize fatigue but also proves the accuracy of 
our system in measuring PerSac. 
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PERSAC Comparison Between Morning (Drowsy) and Evening (Alert) 

Figure 23c: PerSac measurements for evening (blue) and morning (red) bouts 

5.2.5 Validation of the composite fatigue index 
Here we studied the response time versus the composite fatigue index computed by our 

fatigue monitor. The resuhs are plotted in Figure 24, which clearly shows that the composite 
fatigue score (based on combining different fatigue parameters) highly correlates with the subject's 
response time. 

Comparison Between TOVA Response Time and Composite Fatigue Index _ ,  
■ TOVA Response Time 
■ Composite Fatigue Index 

Figure 24: The estimated composite fatigue index (blue) versus the normalized TOVA 
response time. The two curves track each other well. 

It is clear that the two curves' fluctuations match well, proving their correlation and co-variation. 
In the figures below, we try to demonstrate the co-variation and correlation between the composite 
fatigue index and the 3 individual fatigue parameters: PERCLOS, ACES, and PERSAC. 
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Comparison Bitwesn PERCLOS and Composite Filigue Index 

Figure 25 Perclos (blue) versus the composite fatigue score (red). They apparently track each 
other well. 

Comparison Between AECS and Composite Fatigua index 

Figure 26 AECS (blue) versus the composite fatigue score (red). They apparently track each 
other well. 
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Figure 27 PerSac (blue) versus the composite fatigue score (red). They apparently negatively 
track each other well. 

6. Transitions, invention, and media coverage 
Through this research, we have been able to generate additional funding for this and related 

research. Specifically, we receive funding from Honda, Darpa, and ONR. Honda has been 
supporting this project for more than 2 years. Negotiation is currently under way to continue 
supporting this research in Phase 3. Recently, we have proposed to extend the fatigue monitoring 
to human emotion recognition. This effort is currently being funded by ONR/Darpar for 1.3 
million dollars for 4 years. This research has so far yielded 14 publications and one patent 
(pending) including 4 journal publications. In addition, through the support of this project, two MS 
students in computer science have graduated. The project also supported a post-doctoral 
researcher. 

Our research has been covered by various media outles including local newspapers, TV, and 
the New York Times. Below is a photo appearing in the business section of Aug. 26, 2003 issue of 
the New York Times. 

Dr. Qiang Ji of Rensselaer Polytechnic Institute in Troy, N.Y., demonstrates a driver fatigue monitor. 
We have also bmlt a website to disseminate our research. The website includes published papers, 
video demos, and Internet resources related to eye tracking and human fatigue monitoring. The 
website URL is http://www.ecse.rpi.edu/~qji/Fatigue/fatigue.html 
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7. Conclusion 
In this report, we summarize our efforts in developing real time non-intrusive technology 

for monitoring human fatigue. Through this research, we have developed state of the art 
technologies and a prototype fatigue monitor for real time non-intrusive human fatigue monitoring. 
Our contributions include: 1) the development of various computer vision techniques for real-time 
and non-intrusive extraction of multiple fatigue parameters related to eyelid movements, gaze, head 
movement, and facial expressions, 2) the development of a probabilistic framework based on the 
Bayesian networks to model and integrate contextual and visual cues information for accuracate 
and robust fatigue detection, and 3) systematic and scientific validation of the fatigue monitor. 
Experimental validation of our techniques using human subjects demonstrates the good 
measurement accuracy of our techniques. In addition, the study also verifies the validity of the 
proposed fatigue parameters as well as that of the composite fatigue index. 

Our experience concluded that in order to monitor and predict human fatigue, the following 
must be satisfied. First, the technology must be non-intrusive. A technology, even with minimum 
intrusion, will have significant difficulty of acceptance in real world. Second, it is important to 
simultaneously extract multiple parameters and systematically combine them in order to obtain a 
robust and consistent fatigue characterization. Third, a fatigue model must be built to represent 
related knowledge and information and to infer a person's cognitive states from the observed 
sensory data. Our research basically covers all the three aspects. But significant research is ahead of 
us to further realize them. Future research includes 1) further development and improvement of the 
vision algorithms, 2) miniaturization of the hardware components of the fatigue monitor, 3) 
optimization of the software implementation, and 4) validation of our fatigue monitor with a field 
test. 
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